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Abstract: This paper deals with the issue of mathematical modelling of the double inverted pendulum. The paper 
consists of the determination of mathematical model created via Lagrangian, the linearization of system and the design 
of linear quadratic regulator. For linear stable system were chosen DC motors placed to joints. Further for these motors 
were set individual components of PID regulator. The last part of article deals with simulation of double inverted 
pendulum. 
 
1 Introduction 

The study of humanoid robots is currently one of the 
most exciting research projects. Even if some of those 
works have already demonstrated very reliable dynamic 
biped walking (Yamaguchi, Soga, Inoue & Takanishi, 
1999; Hirai, Hirose, Haikawa & Takenaka, 1998; 
Nishiwaki, Sugihara, Kagami, Kanehiro, Inaba & Inoue, 
2000), we believe it is still important to understand the 
mathematical theoretical background of biped 
locomotion. The locomotion of human body can be 
considered as the movement of inverted pendulum with 
certain number of joints, e.g. we can consider human arm 
as triple inverted pendulum [1].  

 
Figure 1 Human arm as double inverted pendulum 

 

An inverted pendulum system is a typically nonlinear, 
redundancy, uncertainty, strong coupling and natural 
characteristics of instabilities. All these features make it 
the ideal model of advanced control theory and typical 
experiment platform of test control results. There are a 
number of different kinds of the inverted pendulum 
systems presenting a variety of control challenges. The 
most common types are [1]: 

• the single inverted pendulum on a cart, 
• the double inverted pendulum on a cart, 
• the double inverted pendulum with an actuator at 

the first joint only, 
• the double inverted pendulum with an actuator at 

the second joint only, 
• the light weight rotary pendulum and 
• other combinations. 

In this paper was solved the stability problem of the 
double inverted pendulum with actuators at both joints in 
the upright position and at joints were used the same DC 
motors. The pendulum is pivoted at the lower end of inner 
arm (Figure 1). 

The first step to achieve the objective is to understand 
the dynamics of the system of double inverted pendulum 
by developing the mathematical modelling of the system. 
In modelling, we have used Euler-Lagrange formulation 
to find equation of motion. In the second step, we 
linearized this non-linear system of double inverted 
pendulum in the up-up position and builded up its linear 
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state space model. The linearization is one of the most 
important issues for control of non-linear systems. In the 
next step, the stability and controllability criteria showed 
that the system is unstable but it is controllable. 
 
2 The motion equation of the double 

inverted pendulum 
The position and orientation of the double inverted 

pendulum in the plane is represented by two shape 
variables–angles q=(α1,α2). Then the configuration space 
of pendulum is Q=G×M=M= α1×α2. This configuration 
space can be visually represented as a torus T2 that arises 
as combination of two basic building blocks of 
configuration space, i.e. by combining two circles (Figure 
2) [2]. 

 

 
Figure 2 The configuration space of double inverted pendulum 

 
The double inverted pendulum belongs to holonomic 

systems. For holonomic systems apply that their 
holonomic constraints remove degrees of freedom from a 
system, reducing the dimensionality of its configuration 
space. Formally, a holonomic constraint is defined as a 
(possibly time-varying) constraint function f on the 
system’s configuration space Q. The zero set of the 
function forms the accessible manifold of the constrained 
system, the set of configurations satisfying the constraint 
[3]. 

The mathematical model of pendulum was derived 
using the Euler-Lagrange equation [4]: 
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where L=Ek-Ep is Lagrangian, Ek is kinetic energy, Ep is 
potential energy and M is generalized torque produced by 
actuators placed at joints. The kinetic energy of inverted 
pendulum has the form: 
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The potential energy is defined as: 
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After substituting of individual terms of kinetic and 
potential energy to Lagrangian and after substituting to 
equation (1), we get the motion equations of double 
inverted pendulum: 
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3 The linearisation of inverted pendulum 

The double inverse pendulum is described by two 
non-linear equations of motion. We need to linearize this 
non-linear system in operating point closely to steady 
state. Assuming small deviations we can use the 
following angle approximations [5]: 
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After application of previous equations, motion equations 
take the form: 
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Linearized motion equations (9) and (10) we rewrite 

to the form of state equations [5]: 
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After substituting the values of parameters for the 
inverted pendulum: 

• m1=0,5kg, 
• m2=0,5kg, 
• l1=1m, 
• l2=1m, 

 
form of matrices is as follows: 
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4 The linear quadratic regulator 

A state-space design approach is well suited to the 
control of multiple outputs as we have here. This problem 
can be solved using full-state feedback. The schematic of 
this type of control system is shown below (Figure 3) 
where K is a matrix of control gains. 

 

 
Figure 3 The schematic of full-state feedback control system [6] 

 

The first step in designing a full-state feedback 
controller is to determine the open-loop poles of the 
system. The open-loop poles for inverted pendulum we 
can solve using command in programme MATLAB [6]: 

• poles=eig(A), 
 

where we work with matrix A. These poles can be 
obtained also by solving of the characteristic equation of 
transfer function. 
 

Based on the above mentioned matrices from equation 
(12) we will make the transfer functions using Laplace 
transform assuming zero initial conditions. Laplace 
transform is yet another operational tool for solving 
constant coefficients linear differential equations (Figure 
4). The process of solution consists of three main steps: 

• the given “hard” problem is transformed into a 
“simple” equation, 

• this simple equation is solved by purely 
algebraic manipulations, 

• the solution of the simple equation is 
transformed back to obtain the solution of the 
given problem. 
 

In this way the Laplace transformation reduces the 
problem of solving a differential equation to an algebraic 
problem. The third step is made easier by tables, whose 
role is similar to that of integral tables in integration [7]. 
 

 
Figure 4 The schematic of Laplace and inverse Laplace 

transform [8] 
 

The transfer functions of inverted pendulum created 
using the Laplace transform express relation between 
outputs α1, α2 and inputs M1, M2 and their form is: 
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The poles for inverted pendulum are: 
• p1=-7,9571, 
• p2=7,9571, 
• p3=-3,2031, 
• p4=3,2031. 
The two poles of the open control system are located 

in the right half-plane of complex variable s, from it 
follows that the double inverted pendulum is unstable 
system (Figure 5).  

 
Figure 5 Two poles of the open control system 

 
On the following figure (Figure 6) is course of the 

angular rotation of joints unstable inverted pendulum α1 
and α2 when inputs M1 and M2 are 1Nm. 

 
Figure 6 The course of the angular rotation of joints of unstable 

inverted pendulum α1 and α2 

Before we design our controller, we will first verify 
that the system is controllable. Satisfaction of this 
property means that we can drive the state of the system 
anywhere we like in finite time (under the physical 
constraints of the system). For the system to be 
completely state controllable, the controllability matrix 
CO must have rank n where the rank of a matrix is the 
number of independent rows (or columns). The number n 
corresponds to the number of state variables of the 
system. The controllability of system was established 
using commands [6]: 

• CO=ctrb (transfer_functions), 
• controllability=rank(CO). 

Inverted pendulum is described by four state variables 
and the rank of controllability matrix is four, that is, it 
follows that the system is controllable. 

We will use the linear quadratic regulation method 
for determining our state-feedback control gain matrix K. 

Na jej výpočet opäť využijeme MATLAB pomocou 
príkazov [6]: 

• Q=C'*C, 
• R=[1 0;0 1], 
• K=lqr(A,B,Q,R). 
After determining state-feedback control gain matrix:
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We can assemble the transfer functions of stable 
inverse pendulum: 
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To achieve a vertical position up was added another 
block PID controller to the block diagram. A 
proportional–integral–derivative controller is a control 
loop feedback mechanism (controller) commonly used in 
industrial control systems. A PID controller continuously 
calculates an error value as the difference between a 
desired setpoint and a measured process variable. The 
controller attempts to minimize the error over time by 
adjustment of a control variable, such as the position of a 
control valve, a damper, or the power supplied to a 
heating element, to a new value determined by a weighted 
sum: 

dt

tde
KdeKteKtu

t

dip

)(
)()()(

0
∫ ++= ττ        (16) 

where Kp, Ki and Kd all non-negative, denote the 
coefficients for the proportional, integral, and derivative 
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terms, respectively (sometimes denoted P, I, and D). In 
this model: 
• P accounts for present values of the error. For example, 

if the error is large and positive, the control output will 
also be large and positive. 

• I accounts for past values of the error. For example, if 
the current output is not sufficiently strong, error will 
accumulate over time, and the controller will respond by 
applying a stronger action. 

• D accounts for possible future values of the error, based 
on its current rate of change.  

As a PID controller relies only on the measured 
process variable, not on knowledge of the underlying 
process, it is broadly applicable. By tuning the three 
parameters of the model, a PID controller can deal with 
specific process requirements. The response of the 
controller can be described in terms of its responsiveness 
to an error, the degree to which the system overshoots a 
setpoint, and the degree of any system oscillation. The use 
of the PID algorithm does not guarantee optimal 
control of the system or even its stability. 

Some applications may require using only one or two 
terms to provide the appropriate system control. This is 
achieved by setting the other parameters to zero. A PID 
controller will be called a PI, PD, P or I controller in the 
absence of the respective control actions. PI controllers 
are fairly common, since derivative action is sensitive to 
measurement noise, whereas the absence of an integral 
term may prevent the system from reaching its target 
value [9]. 

The individual components P, I and D were 
automatically generated after running the button Tune, by 
which was designed the most suitable controller for 
controlling of inverted pendulum. From the transfer 
functions we constructed the course of the angular 
rotation α1 and α2 of the joints (Figure 7), where we can 
see that the system is stable. 

 
Figure 7 The course of the angular rotation of joints of stable 

inverted pendulum α1 and α2 
 

To the block diagram (Figure 9) were finally added 
also DC motors with power supply 6V and their 
parameters are [10]: 

• L=0,000121H, 
• km=0,00449Nm/A, 
• kb=0,00448Vs/rad, 
• J=2,18.10-5kgm2, 
• B=9,0946Nms/rad, 
• R=2,22Ω. 

 
Using Laplace transform we created the transfer 

function for DC motors: 
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The process of generating values of PID controller 

was again realized. The course the angular rotation of 
joints of inverted pendulum, when on input to block 
diagram is already placed power supply of DC motors, we 
can see in the figure below (Figure 8). 

The simulations were carried out with zero initial 
conditions and deviations in individual courses were 
caused only due to gravity. 

 
Figure 8 The course of the angular rotation of joints of stable 
inverted pendulum α1 and α2 in connection with DC motors 

 
Conclusion 

The article deals with the issue of stabilization of the 
double inverted pendulum. After the determination of the 
mathematical model of pendulum using Euler-Lagrange 
equation, we were able to linearize system. From the 
mathematical model transformed into the state space 
through MATLAB were verify the stability and 
controllability of system. After the determination state-
feedback control gain matrix K using linear quadratic 
control method and individual components of PID 
controller were created block diagrams, which were then 
also simulated. 
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Figure 9 The complete block diagram of the double inverted pendulum expressed using a complex variables 
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