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Abstract: This paper deals with the solution of dynamicaitegns in state space. Complicated differential éopsare
converted into a simpler form by using state vdeisin vector matrix. It is used for multi-inputdamulti-output systems,
and the solution is performed using matrix notatlibdescribes systems with complex internal strigetlt allows state
models to be manipulated using matrix calculuste®ys described by a state model are characterizédielfact that it
is easier to design state control for them.

1 Introduction pressed, nor does the temperature in a room change

Classical control theory and the methods we hage usinstantly when the air conditioning is turned on.
so far are based on a simple description of thatiapd ) } .
output of a system, usually expressed as a trafusfetion. In corporate systems, increasing research funding f
These methods use no information about the internifoject will not increase returns in the short tdrat may
structure of the device and are limited to systeritis one increase them in the long term (if it is a goodeistment).
input and one output, where we have seen onlydinit These are all examples of dynamic systems whose
control of closed-loop behaviour using feedbackmn ~ behaviour changes with time. Another perspective on

Modern control theory solves many of the consteaindynamics comes from electrical engineering. The
using a much richer description of the dynamicghef Prototype of such a problem was the description of
devices. The trend in engineering systems is tosvar@lectronic amplifiers. It was natural to view anifier as
greater task complexity, especially due to theireqments @ device that transforms input voltages into output
of complex tasks and good accuracy. Complex syste@ltages, neglecting the internal details of thepldrer.
may have multiple inputs, multiple outputs, and npgy  This resulted in an input-output view of systems.
time-varying. Due to the need to meet increasinglpynamic systems can be viewed in two ways: an rialer
stringent performance requirements of control syst¢he and an external view. The internal view attempts to
increase in system complexity, and easy access QQscrlbg internal regularities and comes from waks
computers, modern control theories are an appruattte Mechanics. The prototype of such a system was the
analysis and design of complex control systemss Tiaiv  description of the motion of the planets. For thisblem
approach is based on the Concept of state. Thﬁmatept it was natural to give an overall characterizatafnthe
itself is not new, as it has been around for a ltimg in  Motion of all the planets. This requires a rigoranalysis

classical dynamics and other fields [1-7]. of the action, gravitational action, and relatiwesitions of
the planets in the system. The two different vievese
2 State space representation merged into a control theory. Models based onritermal

view are called internal descriptions, state mqdglsvhite
box models. Models based on the external view altec:
external descriptions, input-output models, or blaox
models.

A model is a mathematical representation of a aysi
biological or information system. Models allow us t
predict how a system will behave. In this text wié be
interested in models in the so-called state forrhene
phenomena do not happen instantaneously, e.gsptes
of a car does not change instantly when the peslal i
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21 Statevariables
The state variables of a dynamical system are tl
variables forming the smallest set of variablest th: i
determine the state of the dynamical system. léast n
variables x, X, ..., % are needed to completely describe th
behavior of a dynamical system such that oncertpetiis
given for t>to and the initial state at time t#i$ specified,
the future state of the system is completely deterth
then such n variable set is a state variable.
State variables need not be physically measurable o
observable quantities. Variables that do not repres Matrix:
; " . atrix:
physical quantities that are neither measurable nQr .
. (t) system matrix,
observable can be selected as state variablesfi@edom B (t) input matrix
in the selection of state variables is an advantdggate C (1) oEtput m atri'x
methods. In practice, however, it is convenienthioose S
. . : D (t) feedforward matrix.
an easily measurable quantity on the state vasaiflat
all possible, because optimal control of the cdrws
will require feedback from all state variables with
suitable value.

Figure 1 Graphical representation of state equations [1]

3 Computer simulation of dynamic systems
A simple mechanical oscillator will be used as istfi
example to express the state description (Figure 2)
Consider a mechanical system consisting of a bbrhags

2.2 Stateequation i fixed by a spring of stiffness k against a rifyjaime.

In state space analysis, we are concerned withe th
types of variables that are involved in the modgllbf
dynamical systems: input variables, output varigbsad L L LLS
state variables. The state system representatiandiven
system is not unambiguous, except that the nunflsae
variables is the same for any of the different estat k
representations of the same system.

Suppose also that there are r inputs) uw(t), ..., u(t)
and m outputsift), ya(t),..., ¥n(t). We define the n outputs
of the integrators as state variablegt)xx(t),..., »(t).

The system can be described by the equations:
%, () = f(X1, Xg, e, X3 Ug, Uy, oon, Uy £) m
X (8) = f5 (0, Xy ey X U, Ug, o, Uy £) y
i () = oGy, Xz, omes X5 Un Uz, ooy Uy D) (1) _ -
Outputs y(t), yo(t), ..., yu(t) are defined as: Figure 2 Mechanical oscillator
Y1(t) = G101, Xg, oo, X5 Uy, U, oo, Uy 1)
Y2(8) = g2(X1, Xz, ey Xj Up, Uz, o, Uy 1)

The equation of motion of the system is:

Ym(8) = Gm (X1, Xz, ooy X5 Ug, U, oo, Uy 1) 2 my(6) + ky(®) = 0 ©)
Then we write equations (1) and (2) : . .
%(t) = f (6w t) 3) We define the state variablegtx and x%(t) as:
y(®) = g(xut) @) =y
X, =y )

where equation (3) is the state equation and ezjuéd is
the output equation. The vector functions f andwplve
time t and such a system is called a time-varyysgesn.

If we perform the derivation of the state variabtégn
it is possible to write:

X1 = X
If equations (3) and (4) are linearized about the Xy = —%xl (8)
operating state, then they have the following Ifieal  The dynamic system is not excited by an extermatiche
state equations and output equations: initial condition is given to the initial conditio=0.3m
(t) = A(Dx(t) + BO)u(t)
y(t) = C(©)x(t) + D(Du(t) (5)
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In the standard form it is possible to write:
x=Ax+ Bu
y=Cx+ Du

In matrix form, equations (11) and (12) can be temit

'\l‘.‘ “-‘,‘L ;“." I‘\. I‘I‘\ .

0 1 X 0
; ; k bl[x1]+ 1lf
Figure 3 Satetrajectory and plot of results kinematic m mi 2 m
parameters _ 1
y=1 o [;}] (13)

Consider the mechanical system p in Figure 4, whickhere 0 1 0
consists of a mass m, a spring k and a dampenihar A= K b 5= |1
a force f(t) acts. We assume that the system atin = = il [
m m m

(op

’_.y C=1[1 00 D=0 (14)

Plot of results kinematic parameters such as the
position and velocity of the mass is on Figure 5.

==

y=x(t)
wv=vit)

i

ANNNXX

Figure 4 Second-order dynamic system

ylm]v[mis]

The external force f(t) is the input to the systamd the
displacement of mass y is the output. This systera i
system with one input and one output and has ogeede
of freedom. The equation of motion of the system is

my = f(t) = fp = fi Pt g

,,,_
=
@
E

my = f (t)_ — by —ky Figure 5 Representation of position x(t) and vel ocity v(t)
my + by + ky = f(t) 9)

) ) ) ) By examining a large number of dynamical systems, i
The second-order differential equations describes tyas found that the shapes of the trajectoriesefyistems
equations are required along with two state vee@miVe convergent, monotonous or periodic to some limiwvbét

define the state variableg() and x(t) as can be a point or a set of points (a circle). Wetalking
x() =y about a stable system. On the x-axis is repres¢intestate
x,(6) = %,(t) = y(t) (10)  variable x, i.e. the position, and on the y-axis the state

. ) variable %, i.e. the velocity of the mass m (Figure 6).
Equation (10) can be solved for the state varialbles

a linear, time-invariant, second order system waitfingle

XY Plot

input, the state equations could take on the fatigvform. *r
Furthermore, it is possible to write:
X=X, I
. k b 1
xZ::—;xl—;x2+;f (11) 1k

Where x1 and x2 are the state variables. There is a 2 °
single output, the output equation cold take on the
following form:

y=x (12) B
The coice of state variables for a given systemots " . , . ; ‘ :
unigue. The reguirement in choosing the state bhasais = ? S ‘ :
that they be liearly independent and that a minimum - - -
number of then be chosen. Figure 6 Satetrajectory of mechanical system
~0~
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position m1
velocity m1
position m2

n

In the next case, consider the mechanical systemrsh
in Figure 7, which consists of two bodies of masseand |
m; fixed in series by means of three springs ofreti$k k, \
ks and k on a rigid frame. An excitation force Factsomath ™ VT
body of mass m1 in the positive direction of thexis. : el

\
K, ° WAL

25
20 f P\ n

) h...l)
A

b ks YR TS AR AN R AT Y
o WMWWA m . Vo Ay
5 LAY I
<o) <o > 2
X]_ X2 0 5 10 - 15 20 25
Figure 8 Position and vel ocity of the mechanical systemin

Figure 7 Two-mass dynamic system Matlab

In this case we get two equations of motion offtii:
m_1.371 = —kyy,+ ky(y,— y1) +F

m,y, = —k,(y; — y1) + k3y; (15)

4  Conclusions

The aim of the paper was to define a state space
description of dynamical systems. and then applioit
examples of mechanical systems. Second-order efiffiat
equations were expressed and written in the foraeofor
matrices using state variables The state desaripifoa
dynamical system can describe systems with multiple
inputs and outputs and systems with complex interna
structure. The results of the solutions of the raedtal

After modification we get the shape:
321 = (k1 + k(v — y1) + F)imy
Vo= (ko (2 — y1) + k3y,)/m, (16)

Choosing state variables:

j:l = 3;./1 systems were obtained using Matlab/Simulink.
2 1
X3 =Y2
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